Новости и статьи по автозвуку на МАГНИТОЛЕ
  • Полезные советы. Подробности из жизни кроссоверов. Часть 2

    В прошлом номере “C&M” мы начали обсуждать подробности из жизни кроссоверов.

    Удалось показать, что разделительные фильтры 1-го порядка обладают немаловажными достоинствами:

    ·                     они простые – в каждой полосе используется только один реактивный элемент;

    ·                     нагружают усилитель мощности не зависящим от частоты сопротивлением;

    ·                     обладают равномерной АЧХ, то есть при наличии идеальных динамиков обеспечивают звуковое давление, не зависящее от частоты.

    Есть у них и недостатки. Во-первых, в окрестности частоты разделения при неодинаковом расстоянии от слушателя до НЧ/СЧ- и ВЧ-головок наблюдается искажение диаграммы направленности излучения: ее максимум оказывается направленным вверх, а не вдоль оси излучения. Во-вторых, из-за малого порядка разделительного фильтра его избирательность невысока, и полоса частот, в которой заметную мощность излучают оба динамика, мешая друг другу, получается достаточно широкой. Хотя некоторые производители и используют кроссоверы 1-го порядка, в большинстве высококлассных АС они все же отдают предпочтение фильтрам более высоких порядков.

    В теории цепей известны разнообразные типы фильтров: Баттерворта, Чебышева, Золотарева-Кауэра и др. Каждый их них отличается особенностями своих частотных и временных характеристик. Если во главу угла поставить требование высокого качества звука, то приходится выбирать такие типы фильтров, которые обеспечивают при хорошей избирательности наиболее равномерную АЧХ. И здесь остаются только два варианта: фильтры Баттерворта и фильтры Линквица-Райли. Поговорим о них подробнее.

    Основным свойством фильтров Баттерворта является гладкость их АЧХ. Это означает, что переход от полосы пропускания к полосе задерживания происходит плавно.

    Фильтры Баттерворта могут иметь разные порядки. Чем выше порядок фильтра, тем больше требуется использовать в нем реактивных элементов и тем лучшей избирательностью он обладает. Скорость, с которой падает уровень сигнала при переходе от полосы пропускания к полосе задерживания, называют крутизной спада АЧХ. Она измеряется в децибелах на октаву (дБ/окт.). Чтобы представить, как она зависит от порядка фильтра, на рис.1 показаны амплитудно-частотные характеристики фильтров нижних частот Баттерворта разных порядков: от 1-го до 4-го. Все фильтры, АЧХ которых показаны на рисунке, имеют одну и ту же частоту среза – 1700 Гц. Это проявляется в том, что спад звукового давления на 3 дБ (на рис.1 этот уровень обозначен горизонтальной штриховой линией синего цвета) у всех фильтров происходит именно на этой частоте. Чем выше порядок фильтра, тем быстрее спадает уровень звукового давления при переходе от полосы пропускания (диапазон ниже 1700 Гц) к полосе задерживания (более высокие частоты).

    Сравнение амплитудно-частотных характеристик ФНЧ Баттерворта разных порядков

    Зная порядок фильтра, вычислить скорость спада его АЧХ в дБ/окт. можно по простой формуле 6xn, где n – порядок фильтра. Результаты расчета для фильтров с порядками от 1-го до 4-го приведены в табл. 1. Там же указана скорость спада в раз/окт., показывающая, во сколько раз уменьшается сигнал при увеличении частоты на октаву.

    Таблица 1.

    Как выглядит АЧХ фильтров верхних частот, можно представить, зная, что она получается, если все точки АЧХ ФНЧ, показанной на рис.1, зеркально отразить относительно вертикальной линии, пересекающей ось частот в точке 1700 Гц.

    Чтобы определить АЧХ суммарного звукового давления идеальных НЧ/СЧ- и ВЧ-головок, работающих с кроссоверами разных порядков, приходится учитывать не только значение спада АЧХ, но и фазовые сдвиги выходных сигналов. Сформулируем несложное правило, которое позволит понять особенности применения фильтров высоких порядков. Разность фаз звуковых волн ВЧ- и НЧ/СЧ-динамиков на частоте разделения связана с порядком кроссовера следующим соотношением:

    ∆φ=90°·n

    Результаты расчетов по этой формуле для кроссоверов разных порядков приведены в табл. 2.

    Таблица 2.

    Интересный вывод можно сделать, обратив внимание на значение разности фаз для фильтра 2-го порядка. Оказывается, на частоте разделения НЧ/СЧ- и ВЧ-динамики будут работать в противофазе, так как фазовый сдвиг составит 180°. Это означает, что направления движения их диффузоров будут противоположны. В то время как один из них будет двигаться в направлении слушателя, создавая сгущение воздуха, второй переместится в противоположную сторону, создавая разрежение. Из-за этого на АЧХ суммарного звукового давления возникнет провал. Чтобы получить более-менее равномерную АЧХ, приходится включать динамики в противофазе, как это показано на рис. 2 при помощи знаков “+” и “-“. Противофазное включение достигается простой «переполюсовкой» одного из динамиков. Обратите внимание также на схемы фильтров: в каждом из них используется по два реактивных элемента, поскольку это фильтры 2-го порядка.

    В соответствии с приведенной выше формулой разность сигналов на выходах кроссовера 4-го порядка составит 360°, то есть они снова окажутся синфазными, и изменения полярности включения одного из динамиков не понадобится. Кроссовер 6-го порядка с его разностью фаз 540° (360°+180°) в этом отношении будет похож на разделительный фильтр 2-го порядка: для получения максимально горизонтальной АЧХ в нем также придется изменять полярность подключения одного из динамиков.

    Суммарная АЧХ звукового давления показана на рис.3 как для синфазного (красная линия), так и для противофазного включения (синяя линия). Мы видим, что при синфазном включении из-за фазовых сдвигов кроссовера на АЧХ появляется провал. При противофазном включении динамиков суммарная АЧХ, наоборот, имеет подъем.

    Давайте выясним, откуда он берется. На частоте разделения фазовый сдвиг кроссовера 180° и противофазное включение головок дают в сумме нулевую разность фаз. В связи с этим происходит суммирование одинаковых фаз волн звукового давления. Сумма получается ровно вдвое больше слагаемых. На частоте разделения, то есть на краю полосы пропускания, звуковое давление падает на 3 дБ по сравнению со значениями в середине полосы пропускания. Это означает уменьшение в 0,707 раза. Если просуммировать две синфазных звуковых волны, то их сумма окажется в 1,414 раза больше давления на частотах в середине полос пропускания, что соответствует подъему в 3 дБ. Человеческий слух отчетливо услышит такую неравномерность АЧХ, так как она очень велика – соответствует 2-кратному изменению акустической мощности.

    Ну и наконец, чтобы получить завершенное представление об особенностях АС с фильтром Баттерворта 2-го порядка, рассмотрим ее диаграмму направленности излучения в вертикальной плоскости. Она показана на рис.4. Это зависимость суммарного нормированного звукового давления от угла в вертикальной плоскости между направлением на слушателя и осью излучения АС. Чем меньше направленность излучения, тем ближе кривая к окружности. Такую диаграмму дает очень близкое расположение НЧ/СЧ- и ВЧ-динамиков друг к другу – на расстоянии 4 см (рис. 4а). Практически это соответствует коаксиальной конструкции. Обратите внимание, что диаграмма – это красная линия – проходит намного выше уровня 1, что и соответствует подъему на 3 дБ вблизи частоты разделения АЧХ, показанной на рис.3.

    Как и следовало ожидать, увеличение расстояния между динамиками приводит к увеличению направленности на частоте разделения. При некоторых углах появляются глубокие провалы, что непременно приводит к зависимости тембра звучания от положения слушателя.

    Интересную информацию можно получить, сравнив представленную диаграмму с аналогичными графиками для АС с кроссовером 1-го порядка (они приведены на рис.6 в первой части статьи). Сопоставив рисунки, можно сделать вывод о более благоприятных особенностях диаграммы направленности АС с кроссовером 2-го порядка. При очень близком расположении динамиков она практически идеальна – направленность почти отсутствует. При разнесении динамиков направленность появляется, но центральный лепесток ориентирован по оси излучения АС, а не отклонен вверх или вниз, как это наблюдалось для кроссоверов 1-го порядка.

    Без доказательства сформулируем следующую закономерность. Обнаруженные нами особенности диаграммы направленности АС с кроссовером 1-го порядка справедливы для случаев с использованием фильтров любого нечетного порядка (3-го, 5-го). Аналогично характерные свойства диаграммы направленности АС с кроссовером 2-го порядка проявляются и при использовании фильтров любого четного порядка (4-го, 6-го). Если не верите на слово, проверьте самостоятельно. Как – автор может рассказать любому интересующемуся персонально.

    Итак, разделение полос у кроссовера 2-го порядка улучшилось, основной лепесток диаграммы направленности перестал отклоняться от оси излучения. Все было бы хорошо, но вот подъем на частоте разделения огорчает. Естественно, инженеры-звукотехники начала искать решение. И в конце концов нашли его. О том, что это за решение, будет рассказано в следующей статье цикла.

    Источник: журнал "Car&Music", №4/2005. Текст: Владимир Харитонов
  • Предложения партнеров МАГНИТОЛЫ

  cc by-nc-sa